Notes on waste, water, whatever
Random header image... Refresh for more!

Category — Living Things

Harper’s Instagram post teasing my story, “The Hidden Rivers of Brooklyn.”

Some folks living in the Gowanus watershed, at Brooklyn's western edge, dream of restoring a bit of the polluted canal’s natural function and softening its edges with vegetation. But those visions give Carl Alderson, who is coordinating the canal’s ecological restoration, bouts of agita. "What we think of as a creek system is gone,” he said. “For a softer edge to be meaningful, folks in the neighborhood will have to do one thing: stop being hip. Land values are too high for anyone to seriously consider relinquishing parcels so that they can be transformed into natural infrastructure. We have just enough room here for a few potted plants." // A kayak excursion on the canal in fall 2013 shaped Alderson’s first impressions of the Gowanus. On that day, the milky green water was stippled with skinless rats, feces, and Coney Island whitefish. When the disgusted scientist clambered out of his boat at trip’s end, he abraded his forearm on a slimy bulkhead. Within a day, the area grew itchy. Then it hardened and turned red. The infection immobilized his arm for nearly four weeks. “What an abomination is the Gowanus," Alderson later wrote me. "This restoration will be the ultimate challenge." —By Elizabeth Royte. // Read Royte's story, "The Hidden Rivers of Brooklyn," in the March issue of Harper's: harpers.org (link in bio). #journalism #gowanuscanal #brooklyn #elizabethroyte Photo courtesy of Flickr/Listen Missy!

A photo posted by Harper’s Magazine (@harpersmagazine) on

 

February 26, 2016   1 Comment

What does an effective food-waste campaigner actually do?

Find out by reading my profile, about the efforts and antics of Tristram Stuart, founder of Feedback, in this month’s National Geographic. It’s the magazine’s cover story, and it looks like this:

natgeo0316cover-foodwaste

Photo by Brian Finke.

February 23, 2016   No Comments

Recyclers (African vultures, that is) on the brink

vulture-kill-blood-droplet-2-1536Poachers and pastoralists are poisoning African vultures at an alarming rate, with several species in danger of disappearing. What’s the big deal? Before their numbers were decimated, vultures residing in or commuting into the Serengeti ecosystem during the annual migration—when 1.3 million white-bearded wildebeests shuffle between Kenya and Tanzania—consumed more meat than all mammalian carnivores in the Serengeti combined. Lose the vultures and there’d be some ugly knock-on effects. Read all about it in my feature for National Geographic.

Photo by Charlie Hamilton James.

December 14, 2015   2 Comments

A reeking sacrifice zone morphs into a magnet for field biologists

Audubon Magazine has just published, with stupendous photographs by Len Jenshel and Diane Cook, my feature on the transformation of the humongous Fresh Kills landfill, on Staten Island, into a 2,000+ acre nature preserve. I loved reporting this story because I got to spend time outdoors with field biologists — men and women studying birds, bats, and turtles in the former dump, which was formerly a wetland and formerly replete with wild mushrooms, edible plants, freshwater springs, all manner of birds, and fin- and shellfish galore. The new park isn’t exactly restoration — we’re not getting that glorious wetland back — but I think it’s gonna be pretty awesome.

June 29, 2015   No Comments

How much food can a city farm produce?

It depends. For a highly qualified answer, take a look at my latest feature, in Ensia magazine.

Urban farming is booming, but what does it really yield?

City-based agriculture produces 15 to 20 percent of food globally. In the U.S., its benefits go far beyond nutrition.

Carolyn Leadly outside greenhouse at Rising Pheasant Farms

Photo by Marcin Szczepanski
.

April 27, 2015   No Comments

An accident waiting to happen

As oil trains derail across the United States, a windswept—and vulnerable—stretch of Montana’s Glacier National Park underscores the folly of transporting crude by rail

The trains roll throughout the day, running east and west along the snow-blanketed tracks of northwestern Montana, dipping low along the southern edge of Glacier National Park. Boxcars, intermodal freight containers, and bulk cargo clamber up and then down the Continental Divide. Night falls, and yet another train emerges from the east, accompanied by a thin metal-on-metal shriek. First to appear are two locomotives, their headlights tunneling through the darkness, then 103 tanker cars, dull black with hymenopteran stripes. Inside the tankers are two and a half million gallons of light, sweet crude, freshly pumped from North Dakota’s Bakken shale formation.

For more than a century railroads have hauled freight and people through this stretch of the Rockies. Glacier owes its existence, in fact, to the Great Northern Railway, which back in 1910 vigorously promoted the legislation that would establish a brand new national park, to which the railroad would soon be hauling wealthy visitors. Railroads, of course, are integral to U.S. commerce, and no one blinks when mile-long trains pass through small towns, big cities, and vast stretches of prairie, desert, and forests. Or at least they didn’t blink until recently, when shippers began to fill so many of those railcars with oil. In 2009, western crude filled a mere 8,000 tanker cars; in 2013, thanks to increased production in the Bakken, it filled 400,000.

The vast majority of America’s oil is still transported via pipeline, which is a significantly cheaper means of conveyance than rail. But building new pipelines to handle the glut of Bakken crude is expensive, time-consuming, and increasingly stymied by political opposition; by landowners unwilling to grant easements; and, if the pipeline crosses federal land, by heightened environmental review. Train tracks, on the other hand, already crisscross the nation, and freight railroads are now investing tens of billions of dollars on new locomotives, on the upgrading of track, and on so-called transloading facilities, where oil is either funneled into unit trains (which consist of 100 or more oil tankers) or pumped out of them and transferred to refineries, river barges, or ships. In 2013, 69 percent of Bakken oil traveled by rail; that percentage is expected to reach 90 percent this year.

But with that increase comes another—an increase in the risk of environmental catastrophe. According to the Federal Railroad Administration, at least one train, on average, slips off the tracks in this country every single day. Multiply the number of train cars carrying crude oil by 50, as we did between 2009 and 2013, and you multiply the odds of a leak, a major spill, or—worse—a massive explosion commensurately. And depending on where, when, and under what circumstances such an accident were to take place, the impact could range from manageable to utterly, epically devastating.

* * *

On a snowy day in January, I follow via automobile as the Burlington Northern and Santa Fe Railway climbs west out of the plains near the small town of East Glacier, in a part of Montana known for its wicked winds. Gusts of over 100 miles an hour aren’t uncommon here. Driving with a local resident, I note the remains of a porch that has blown off a house and into a tree, several steel posts bent 90 degrees by westerly gales, and a railroad-erected windscreen covering the train bridge over Midvale Creek. No trains have fallen off the bridge, but high winds have been known to blow boxcars off their tracks in other exposed stretches.


Photo: Joel Sartore

Pushed and pulled by two locomotives at either end, the oil tankers depart East Glacier, attain an elevation of 5,272 feet at Marias Pass, then begin their long descent, contouring along steep mountainsides, snaking through a series of wooden avalanche sheds, and curving around wetlands until they emerge, 60 miles west, in the equally tiny town of West Glacier. It’s all incredibly scenic—snow-brindled conifers, distant peaks, granite outcrops—and Amtrak tries as hard as it can to take advantage of the scenery by routing its Empire Builder passenger train through this corridor during daylight hours. Alas, there’s so much competition for rail space from oil trains these days (and, increasingly, coal trains) that the Empire Builder now has an on-time rate of less than 50 percent. Oil trains have similarly stalled the transport of North Dakota grain, causing its price to spike 20 percent. But when there’s enough light, those eastward-bound Amtrak passengers get to see, on their left, the peaks of Glacier National Park; on their right are the splendors of the Flathead National Forest, a 2-million-acre tract, half of which has been officially designated as wilderness.

“This is a particularly sensitive part of the world,” Mark Jameson, of the National Parks Conservation Association (NPCA), tells me, before ticking off its various designations: United Nations Biosphere Reserve; UNESCO World Heritage Site; hydrological apex of the North American continent; ancestral hunting grounds of the Kootenai, Salish, and Blackfeet tribes. “The park and the forest are major engines of the rural economy”—nonresidents spend more than $714 million in the region—“and these streams contain numerous species of concern, including the bull trout and the westslope cutthroat trout.”

As 2013 drew to a close, Jameson’s group began to ponder, for the first time, the repercussions of a nightmare scenario: What if a unit train were to derail here, spilling millions of gallons of oil into this unspoiled environment before bursting into flames and triggering a catastrophic explosion? Unfortunately, such a scenario isn’t so farfetched. Last July, 63 tankers filled with Bakken crude derailed and exploded in Lac Megantic, Quebec, killing 47 people and incinerating the center of the small town. Then, in November, 25 cars of Bakken oil derailed in an Alabama swamp: the ensuing explosion sent 300-foot flames into the sky and continued to burn for three days. In December a Bakken oil train collided with a derailed grain train in Casselton, North Dakota, spilling 400,000 gallons and burning for close to 24 hours while more than a thousand residents evacuated their homes in sub-zero temperatures. Since March of 2013, in fact, there have been 10 large rail-related spills of crude in the U.S. and Canada. Just two weeks ago, a southbound Canadian Pacific train leaked a trail of about 12,000 gallons of crude oil through nearly 70 miles of southeastern Minnesota.

Historically, crude oil has been placarded as a product with “low volatility,” the kind of oil that couldn’t be lit with a blowtorch. But in the wake of the Lac Megantic disaster, investigators determined that the crude coming out of North Dakota had a much lower flash point than other forms of crude, and posed a much more significant fire risk if released. (Missouri’s Department of Natural Resources is concerned enough about this risk, apparently, that the agency now requires the flaring of Bakken crude’s volatile compounds before it will allow barges to carry the stuff down the Mississippi River in that state.) The DOT-111 tankers that hold the oil are another problem entirely. Today, 85 percent of the 92,000 tank cars that haul flammable liquids around the nation are standard issue DOT-111s. For decades the National Transportation and Safety Board has been warning that this type of tanker car, in particular, punctures easily. Last fall, the Federal Railroad Administration told the Petroleum Manufacturers Institute that it had found “increasing cases of damage to tanker cars’ interior surfaces,” possibly caused by “contamination of crude by materials used in fracking.”

Earlier this year the American Association of Railroads petitioned the DOT to impose new standards on tanker cars, including thicker head shields and improved valve coverings. But retrofitting or redesigning tankers to resist corrosion and puncture would cost the industry around $3 billion, remove cars from service in an already tight market, and take several years. Lobbyists for Canadian and U.S. oil producers have asked regulators not to rush into rules that could hurt their profits, preferring that they focus instead on addressing “track defects and other root causes of train accidents.”

* * *

The derailment of a unit train along Glacier National Park’s U-shaped southern boundary is what one might deem a low-risk proposition that nevertheless carries a high-hazard potential. The cold, clear waters of this corridor—where Bear Creek, key trout-spawning territory, joins the wild and scenic Middle Fork of the Flathead River—are pristine, and they support a lucrative rafting, kayaking, and fishing industry. “Once oil gets into moving water, there’s no cleaning it up,” says Scott Bosse, the Northern Rockies director of the conservation group American Rivers. “We saw this with the Yellowstone River [pipeline] spill of July 2011, where less than 1 percent of the 63,000 gallons of crude was recovered.”

Residents of the canyon that runs between the park and the forest note that BNSF employees are a constant presence along the tracks, tweaking, upgrading, replacing, and surfacing the company’s investment. Despite their attentions, derailments along this stretch aren’t unknown: there have been 37 between 2000 and 2012—on the high end, compared with other Continental Divide railroad crossings. Some have involved strong winds; some are attributed to human error or equipment failure. According to one oil-train conductor based in North Dakota who asked to remain anonymous, BNSF pushes its employees hard. With so much traffic on the rails, he told me, “we’re working longer than the legal limit, and we’re sleep-deprived. Older and more experienced conductors and engineers are retiring, leaving us with young and inexperienced workers.” Another BNSF mechanic whom I met as he was ordering lunch at a roadhouse near Essex, Montana, told me that wet rails were a perennial problem. “Trains spin their wheels and dig holes in the track.” The grade, too, worried him. “It takes a lot to stop a train coming down from the Pass.”

* * *

So how would a worst-case scenario play out? Picture this: a unit train jumps the track just west of the Continental Divide. Cars tumble off the rail bed, bouncing and ricocheting off each other. Tankers puncture, oil spills and flows, and a spark detonates a massive explosion.

Then the phone rings in the Flathead County Office of Emergency Response, an hour and a half away in the town of Kalispell.


Photo: Loco Steve

Cindy Mullaney, deputy director of that office, explains what would happen next. “What we’d do is send the jurisdictional fire chief out to size up the situation: what have we got, where’s it going, which way is the wind blowing, and do we have ways to mitigate it,” she says. “If the spill is in the river, we have boom, absorbent pads, and sea curtains cached here in Kalispell. The road department has more of that stuff.”

When I ask her whether the geography of the corridor presents any specific challenges to emergency response, Mullaney replies matter-of-factly. “The biggest problem is that you’re on uneven ground,” she says. “A lot of it’s very steep and rocky. There’s a huge amount of snow in the winter. You throw a river in there, the avalanche danger, the limited communication capabilities, limited evacuation sites with a helicopter, the long distance from any type of resources, … it’s gonna be challenging, no doubt about it.”

Montana has six highly trained and well-supplied hazmat teams spread out around the state. The nearest to the Continental Divide, however, is 90 minutes away. Closer to the corridor are a handful of local fire departments that can respond more quickly but that must nevertheless rely on volunteers—most of whom lack up-to-date (or in some cases, any) turn-out gear, advanced training, and the right tools for containing spills or combating fires borne of hazardous materials.

Depending on where it happened and how high the winds were blowing, Charles Farmer, director of emergency services for Glacier County (just east of the Continental Divide), says that an accident in his area could be “devastating, catastrophic. We’d have no capabilities to handle it. We would organize an evacuation.” Ben Steele, East Glacier’s fire chief, answers in much the same way. “We’re not even close to having enough people to respond if there’s a spill,” he tells me. “We typically get only six or seven volunteers to respond. We haven’t had any training on hazardous materials.”

We talk about the Casselton and Lac Megantic unit train fires, which burned so intensely that responders couldn’t even count the number of cars that were going up in flames, right before their eyes, for more than a day. I ask Steele how he and his volunteers would manage such a situation. “We’d use the rule of thumb,” he tells me. “You hold up your thumb in front of your eye and you back away until the fire is completely hidden.” Meanwhile, a conflagration in the steep, windy canyon could rapidly spread over hundreds of acres. And a spill in the river, especially during the spring runoff season, “could pollute 1,000 miles of shoreline.”

* * *

Jeffery Mow has been the supervisor of Glacier National Park for fewer than six months, but he has special reason to worry about oil-related accidents. A lean man with a cheery, eager manner, he began his Parks Department career more than two decades ago in Alaska as a ranger, and then later a supervisor, in Kenai Fjords National Park. After the Exxon Valdez ran aground in 1989, Mow investigated the 11-million-gallon oil spill for the Park Service and the Department of Justice. (Oil washed onto the shores of both Kenai and Katmai National Parks.) Then, when the Deepwater Horizon gushed more than 200 million gallons of oil into the Gulf of Mexico in 2011, the U.S. Department of the Interior sent Mow to Louisiana to act as its incident commander. Despite massive billion-dollar cleanup operations in both locations, he says from behind his desk in the park’s West Glacier headquarters, “the legacy continues. The oil is still out there.”

Shortly after arriving at Glacier, Mow recalls, “several people brought it to my attention that, gosh, these are really long trains coming through here. That piqued my interest.” Soon afterward, he sat down with officials from BNSF, from whom he learned that he’d be seeing a minimum of one unit train a day—containing 3 million gallons of oil—and up to 10 unit trains a week. Mow also learned, to his dismay, that BNSF’s contingency plan for that oil was “their contingency plan for any other hazardous material they transport, which usually comes along in mixed loads.”


Photo: Loco Steve

But as Mow well understands, Bakken crude is no ordinary hazmat. BNSF recently hired a consultant to forge a detailed response plan specific to hauling crude through this region. Matt Jones, a railroad spokesperson, said it would include highly detailed maps of the entire route and strategies on how to deploy containment booms in the Middle Fork of the Flathead River or any other nearby body of water. For his part, Mow says he hopes that whatever form the new approach takes, it will entail simulations such as field and tabletop exercises that will allow local officials to rehearse their responses. “We want to have a robust ability to respond, and not try to figure out what we’re doing when we’re in the middle of it,” he says.

Park officials are also eager to learn if the railroad—which is already planning to spend $5 billion to expand capacity, maintain track, and buy locomotives and equipment in 2014—will be building any more avalanche sheds. Currently, eight of these structures have been erected to protect trains from the snow that regularly plummets down 40 separate avalanche paths within a 9-mile stretch. In 2004, three avalanches derailed 119 empty rail cars and struck a commercial truck on the highway; a fourth narrowly missed cleanup crews. Between them, these avalanches shut down the tracks for 29 hours, creating a 70-mile backup of freight traffic.

Concerned with the ongoing potential for financial and human carnage, in 2005 BNSF requested permission from Glacier National Park to control avalanches using explosive charges and military artillery. But before the park could complete its own environmental impact study, the railroad withdrew its request. The environmental impact study went forward, however, and in the end rejected the use of explosives in favor of building new snow sheds. The cost: $5.4 million, amortized over a 50-year period. The railroad, “which had been concerned enough about train safety to propose bombing the national park,” according to the NPCA’s Michael Jameson, declined to build.

Regarding their decision, Mow simply sighs. “It’s not something we can force them to do,” he tells me.

* * *

I glance out the window of Mow’s office and take in the primeval forest of Douglas fir, aspen, birch, and lodgepole pine. A pair of bald eagles spirals over the southern end of Lake McDonald. Perhaps moved by the elemental beauty of the scene, Denise Germann, the park’s management assistant, jumps into the conversation. “This isn’t just a track moving to a destination,” she says, with some passion. “It’s a track moving through public land, going through pristine country. It’s going through land that has many different [values]—whether it’s recreation or economic or scenery or wilderness.”

She’s recapping, essentially, all that we’ve been discussing so far. And yet it bears repeating, since no plan of anyone’s devising can possibly guarantee safe passage through a high-risk corridor of a hundred or more oil-filled tanker cars a day.

Mow acknowledges her statement with a somber nod. And as he does, I can’t help but recall what Larry Timchak, the president of the Flathead Valley chapter of Trout Unlimited, told me at an earlier point during my trip to Montana.

“The probability of an accident over time,” he said, “ is 1.”

This piece originally appeared at OnEarth.org; top photo by Mike Danneman/Getty.

February 21, 2014   2 Comments

He speaks for the trees: “cork forests suffer from under use, not over use.”

Cork Lorax Patrick Spencer (he’s actually the executive director of the Cork Forest Conservation Alliance) brought me to Portugal last summer to show me some oak trees and hammer home a few points about wine closures –aluminum, plastic, and cork. I wrote about this amazing trip for OnEarth. You can muddle through that story, or you can go straight to the source and hear Patrick make a compelling case for the natural option (cork, that is) in less than fourteen minutes in this TEDx video.

It’s a nice talk, and it succinctly maps out the negative cascade effects of switching to noncork wine closures. But I’ve got to say: Patrick is a lot more exciting in person, minus the suit jacket. He’s a delightful and hugely knowledgeable traveling companion, which I mention here because he’s organizing tiny eco-tours to three Spanish cork regions during harvest season, 2015. Travelers will learn and watch how cork is harvested, visit wineries, sleep in agritourismos, drink a lot of vinho verde, and avoid all contact with cork-company PR professionals.  If you are interested, follow the CFCA link and tell Patrick I sent you.

February 13, 2014   No Comments

NPR on my coattails: More commodity farmers growing non-GMO crops

NPR’s Dan Charles did a piece yesterday for The Salt on farmers growing non-GMO corn and soy. This piece builds on my story, in Modern Farmer, about commodity growers planting conventional seed. Why? They can save money on the seeds (genetically modified corn seed can cost up to $150 a bag more than non-GM seed) and earn more on the back end by selling to buyers willing to pay a little extra ($1 a bushel for corn, more for soy) for grain uncontaminated with GMOs. Like the farmers in my story, The Salt’s farmers plant conventional seeds for non-ideological reasons: it’s what their customers want and will pay extra for. Note that most of them live near the river systems — Illinois, Missouri, Ohio –that send barges of grain out into the non-GMO consuming world.

Lynn Clarkson, founder of Clarkson Grain, which sells conventional and organic corn and soybeans, sees the market for conventionals expanding, thanks in large part to demand from animal feed companies. That’s what my reporting turned up as well: small farmers who sell at greenmarkets and to natural grocers don’t want GMO feeds, nor do producers who sell meat or dairy products to institutions like colleges and to Whole Foods (which plans to label all its foods containing genetically engineered ingredients by 2018).

But what will happen to the premium – which incentivizes farmers to keep their conventional grain separate from GM grain all the way from planting through harvest, storage and transportation — if more farmers get on board? Chris Huegerich, the farmer I profiled, used to receive a 50-cent premium on every bushel he sold to Cargill, in Blair, Nebraska. But this past year, the premium disappeared, thanks to a plethora of farmers planting conventional corn in that area. That’s good for Cargill: for Huegerich, not so much. But he’s not giving up on non-GMOs. In fact, he’s planting even more of them this spring.

February 5, 2014   No Comments

From melons to megawatts?

Beginning next summer, landfill-bound garbage trucks in Massachusetts might smell a little less putrid than usual, thanks to a new regulation that would prohibit any generator of more than a ton of food scraps per week from hauling those scraps to the dump. As the state finally gets serious about diverting food waste, it expects to be sending much of it elsewhere: to hungry people, animal-feed producers, commercial composters, and the high-tech contraptions known as anaerobic digesters, which convert waste to energy and fertilizer.

With the passage of the new regulation, Massachusetts will join its neighbors Vermont and Connecticut in requiring that large amounts of organic waste go somewhere other than landfills. (New York City mayor Michael Bloomberg has expressed his wish to enact a similar requirement before he leaves office at the beginning of next year.) Should these regulations have their intended effect, the Northeast will likely see a major surge in the technology of anaerobic digestion (AD)

The AD process starts when organic material is dumped into an enclosed tank and seeded with hungry bacteria. As microbes devour this nutrient-rich material, they produce sugars, fatty acids, and amino acids. Successive waves of bacteria then convert these products into carbon dioxide, hydrogen, ammonia, organic acids, and methane. The biogases generated by the process can be captured and used to produce fuel, electricity, and heat; left behind are crumbly dregs known as digestate, which has some value as fertilizer.

Across the United States, nearly 200 farms and a handful of industrial food-service operators already use small AD systems to turn slurries of animal waste or food scraps into power. Wastewater treatment plants, of course, have long enlisted microbes to digest the organic solids in human sewage, but increasingly they have been using AD technology to generate their own energy and offset electricity costs. To further boost power production, plants with excess digester capacity are starting to chase food scraps—which generate 10 to 35 times more gas than does animal or human waste.

“This is a great opportunity for economic growth,” says Patrick Serfass, executive director of the American Biogas Council. “We can recycle the organic waste that makes up 20 to 40 percent of our garbage and turn it into renewable energy.” Digesting 50 percent of the food Americans waste, says the Environmental Protection Agency, would generate enough electricity to power 2.5 million homes.

Some worry that government subsidies could create an oversize AD industry with an insatiable appetite for food. Already there is concern in the European Union, where subsidies are a powerful incentive, about the possibility that crops will be grown solely for AD purposes. Others caution that centralized industrial digestion could undermine community composting operations, which not only produce valuable fertilizer for local gardeners and landscapers but also “foster community engagement and commitment to sustainable practices,” according to David Buckel, a New York–based community composting consultant. “We need both scales. But we should do as much local composting as possible.”

However the options shake out, it’s clear that the days of long-hauling massive amounts of methane-generating organics to landfills are numbered. Let the food fight—over the energy and nutrients stored in peanut shells and potato peels—begin.

Photo:jfeuchter/Flickr

This post originally appeared in the winter 2013/2013 issue of OnEarth Magazine

November 26, 2013   No Comments

Seeking closure in a bottle

When my phone rang two months ago, a nice-sounding stranger invited me to visit a Portuguese cork-oak forest. I’d never seen one, so I was intrigued. My caller, Patrick Spencer, executive director of an Oregon-based nonprofit called the Cork Forest Conservation Alliance, explained why seeing and understanding this landscape was so important: the forests are fragile, among the most biodiverse in Europe, and threatened by people who buy wine closed with screw caps and plastic. That’s me, I thought, beginning to feel a little defensive.

Spencer went on: choose wine with a cork, and you help preserve a unique ecosystem, habitat for endangered endemics like Iberian lynx—of which only 150 remain—and imperial Iberian eagles. And don’t forget the adorable and threatened Barbary deer, wild boar, skinks, spade-foot toads, genets, and more than 160 bird species that reside or annually alight in these woodlands.

I heard Spencer out, told him I’d consider his proposition, then walked down the street to my wine store.

 
To read what I learned about wine closures — aluminum screw caps, plastic stoppers and wooden corks — read my post at OnEarth.org

July 26, 2013   No Comments